R-FLICS Meeting

Self-Assembled Materials Systems and Devices for R-FLICS

Prof. Seng-Tiong Ho, ECE Dept
Prof. Tobin Marks, Dept of Chemistry
Northwestern University
August, 2000

OUTLINE

- Introduction
- Self Assembled Superlattice Material
- EO Device Fabrication
- Future Work

Motivation:

Next-Generation EO modulators

- LiNO₃ EO modulators with 10Gbit/sec data transfer rate are being used in current optical communication systems.
- Communication industries have identified 20-40 Gbit/sec as the requirement for next-generation EO modulators.
- The driving voltage should below 5 volt range at 20-40 GHz.
- Current EO modulators are based on bulk-grown LiNO₃ and have reached close to their performance limits.
- Novel approaches are required to realize the next-generation of EO modulators with modulation bandwidths of 20-40 GHz and above.

Approaches

Self-Assembled Supperlattice Chormophore EO Modulator for low Voltage and high frequency applications

POTENTIAL ADVANTAGES OF ORGANIC MODULATORS

- A. High frequency modulation can be achieved because of low ε .
- B. Organic chromophores may be engineered to have High EO coefficients, leading to low switching voltage.
- C. May be lower in cost

SELF-ASSEMBLED CHROMOPHORES -- WHY POLED POLYMERS HAVE PROBLMES?

1. Poling does not give a large degree of polar alignment.

2. Poling:

- a. causes electrical damage to polymers;
- b. causes optical loss (hetergeneities & charge injection);
- c. poled systems are thermodynamically unstable (want to relax back);
- d. difficult manufacturing (difficult to pole uniformly reproducibly);
- e. electric field between poling electrodes can mechnically distort the waveguide.

SELF-ASSEMBLED SUPERLATTICE CHROMOPHORE

- A. No poling required.
- B. Can achieve high polar alignment, giving very large EO coefficient (i.e. low operation voltage).
- C. High frequency modulation can be achieved because of low ε .

DESIGN MOTIFS FOR MOLECULAR/POLYMER ELECTRO-OPTIC MATERIALS

Poled Host-Guest

Poled, Functionalized and Crosslinked

Chromophoric LB Film

Poled and Functionalized

Poled, Crosslinkable Matrix

Self-Assembled Superlattice (SAS)

= Chromophore Module

REVIEW OF THIS MATERIAL DOES NOT IMPLY DEPARTMENT OF DEFENSE ENDORSEMENT OF FACTUAL ACCURACY OR OPINION

Electro-Optic Modulators

Figures of Merit

	LiNbO ₃	EO Polymers	SA Materials
EO coefficient r (pm/V)	31	10-75	30-200
Dielectric constant ε	28	4	~6
Refractive Index n	2.2	1.6	1.6
n ³ r (pm/V)	248	150	120-820
n ³ r/ε	8.7	38	20-140

CLEARANCE OF THIS DOCUMENT DOES NOT INCLUDE ANY PHOTOGRAPH, FIGURE, EXHIBIT, CAPTION OR OTHER SUPPLEMENTAL MATERIAL NOT SPECIFICALLY CLEARED BY THE DEPARTMENT OF DEFENSE

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

MOLECULAR SELF-ASSEMBLY OF HIGH PERFORMANCE ELECTRO-OPTIC STRUCTURES

- Programmed Polar Microstructure
- Tailored Building Blocks
- Compatible with Soft Lithography
- $n^3 r/\epsilon = 20-140 \text{ pm/V}$

- Synthetic Scope, Fidelity, Scalability
- Tune λ , β , r
- Templated Growth, Device Integration
- Microstructure, Loss

Rapid. Readily Adaptable to Automation

Robust, Adherent, Smooth, Structurally, Regular Siloxane Networks

Construction of Chromophoric Multilayers by Molecular Layer Epitaxy

First Generation Self-Assembly

- 1. Rapid topotactic multilayer growth
- 2. Intrinsically acentric (no poling required)
- 3. Very high structural regularity
- 4. Very large $\chi^{(2)}$ response

MOLECULAR MODEL OF A CHROMOPHORIC SUPERLATTICE

Determination of NLO Response for Self-Assembled Benzothiazole-Type Chromphores

First Generation Self-Assembly

SELF-ASSEMBLED ELECTRO-OPTIC MATERIALS PROPERTIES

Microstructural Regularity (XRR)

Polar Regularity (SHG)

Versatile Chromophore Building Blocks Samples of Self-Assembled Films

β (0.65 eV)calcd. (10 ⁻³⁰ cm ⁵ esu ⁻¹)	178	360	1288	1617
λ_{max} calcd. (nm)	572	498	658	666
Film r_{33} , $\omega_0 = 1064$	56	125	410 (est.)	525 (est.)

Ho

nm (pm/V)

Dutta

Marks

Ratner

ELECTRONIC STRUCTURE THEORY IN MATERIALS DEVELOPMENT

Correction Vector/Sum-Over-States ZINDO Calculations

ATTRACTIONS

- Target New Molecular Architectures For Synthesis
- Test New Response Mechanisms
- Understand Mechanisms,
 Frequency Dependence

 $\mu\beta(0.65 \text{ eV}) = 200,000 \times 10^{-48} \text{ esu}$

CHALLENGES

- Environmental Effects
- Metal-Organic Structures
- Open Shell Molecules, Excites States
- Luminescent Electron-Hole Recombination

I. Fragala

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

MOLECULAR SELF-ASSEMBLY OF HIGH REFRACTION INDEX **ELECTRO-OPTIC STRUCTURES**

- Programmed Polar Microstructure
- Tailored Building Blocks
- Compatible with Soft Lithography

DEPARTMENT OF DEFENSE

• $n^3 r/\epsilon = 20-140 \text{ pm/V}$

- Synthetic Scope, Fidelity, Scalability
- Tune λ, β, r
- Templated Growth, Device Integration
- Microstructure, Loss

Second Generation Self-Assembly (Protection-Deprotection)

Comparison of NLO properties of thin films

Second Generation Self-Assembly

B
$$(Me)_{2}(Bu^{t})Si$$

$$O$$

$$Si(^{t}Bu)(Me)_{2}$$

$$\chi^{(2)} \sim 220 \text{ pm/V}$$

$$Si(OMe)_{3}$$

Second Generation Self-Assembly (Protection-Deprotection)

Second Generation Self-Assembly (Protection-Deprotection)

Gallium Oxide formation in 30 min at room temp. from commercially available precursor

Second Generation Self-Assembly (Protection-Deprotection) One "Pot"-Chemistry

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

Prototype Channel Waveguide E-O Modulators Using Self-Assembled Organic Superlattices

Fabrication Processes of Prototype SA Channel Waveguide E-O Modulators (BCB Sandwich)

SEM of Waveguide Sidewall Roughness

UV-VIS-NIR Transmission Spectra

μm\ α (cm-1)	ВСВ	Cytop
1.064	0.044	0.035
1.3	0.083	0.039
1.55	0.227	0.023

Possible Impact During Modulator Processing -- Photolithography

1.2 μm self-assembly with 2μm buffer layer

Width = $10 \mu m$

Thickness = $10 \mu m$

 $V_{\pi}L \approx 1.56V.cm$

 f_{BW} (walk-off).L

= 50GHz.cm

Z = 50 ohms

R33=56pm/V

Operating (λ =1.3-1.6 μ m)

 $50 \text{GHz V}_{\pi} = 1.56 \text{V}$

 $100GHz V_{\pi} = 3.12V$

 $200GHz V_{\pi} = 6.24V$

$0.6 \ \mu m$ self-assembly with $1 \mu m$ buffer layer

Width = $4 \mu m$

Thickness = $4 \mu m$

 $V_{\pi}L \approx 0.78V.cm$

 f_{BW} (walk-off).L

= 56GHz.cm

Z = 50 ohms

R33=56pm/V

Operating (λ =1.3-1.6 μ m)

 $32GHz V_{\pi} = 0.78V$

 $112GHz V_{\pi} = 1.56V$

 $224GHz V_{\pi} = 3.12V$

THE FIRST SELF-ASSEMBLED ELECTRO-OPTIC MODULATOR

- Self-Assembly / Growth Directly on Substrate
- No Poling, No Electrically Matched Buffer Layer
- Cladding Layers Commercially Available, Electronic Grade Polymers
- Stable at 80 °C

For 40 Layer Device, First Generation Chromophore, $r_{33}^{eff} = 56 \text{ pm/V}$

RESEARCH AGENDA

- Second-Generation Chromophore, Second-Generation Assembly
- BCB Above and Below SAS, Measure Loss
- Longer, Thicker SAS \rightarrow $V_{\pi} < 4 \text{ V}$
- Transparent Conducting Oxide Modulating Electrodes

Future Efforts

SA Organic EO modulators

- 1. Materials
 - Implement Automated Assembly
 - Implement New Super Chromophores
 - Characterize EO, Loss Characteristics
- 2. Device
 - Waveguide Fabrication, Testing
 - Modulator Fabrication, Testing